o

Least Authority

PRIVACY MATTERS

Data Lake Token + Vesting Smart Contracts
Security Audit Report

Data Lake

Final Audit Report: 5 December 2022

Table of Contents

Overview
Background
Project Dates
Review Team

Coverage

Target Code and Revision

rting D mentation
Areas of Concern
Findings
General Comments
System Design
Code Qualit

Documentation

Scope
ific | ion
Issue A: Incorrect Implementation of deleteBeneficiary

Issue B: Incorrect Implementation of addVestingScheduleAllocation and
removeVestingScheduleAllocation

Issue C: BlackList Manager Can Blacklist TokenVesting Smart Contract

Issue E: Centralized Ownership of Smart Contracts

Issue F: Unchecked Return Value from the ERC-20 Token Transfer

Issue G: Missing Zero Check for terms in createVestingSchedule Function

Suggestions

Suggestion 1: Update Code Comments to Reflect the Actual Implementation
Suggestion 2: Update Documentation to Reflect the Implementation

Suggestion 3: Change Misleading Naming of Functions

S ion 4: Set TGE Ti in the C
Suggestion 5: Cache the Length in for Loops

Suggestion 6: Use Custom Errors to Save Gas

Security Audit Report | Data Lake Smart Contracts | Data Lake 1
5 December 2022 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Suggestion 7: Use an Updated and Non-Floating Pragma Version
About Least Authority
Our Methodolo

Security Audit Report | Data Lake Smart Contracts | Data Lake
5 December 2022 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Overview
Background

Data Lake has requested that Least Authority perform a security audit of their smart contracts.

Project Dates

November 16 - 22: Initial Code Review (Completed)
November 23: Delivery of Initial Audit Report (Completed)
December 2-5: Verification Review (Completed)
December 5: Delivery of Final Audit Report (Completed)

Review Team

e Mukesh Jaiswal, Security Researcher and Engineer
e Ahmad Jawid Jamiulahmadi, Security Researcher and Engineer

Coverage

Target Code and Revision

For this audit, we performed research, investigation, and review of the Data Lake smart contracts followed
by issue reporting, along with mitigation and remediation instructions as outlined in this report.

The following code repositories are considered in scope for the review:

e Data Lake Token App:
https://github.com/Data-Lake-LLC/token-app

Specifically, we examined the Git revisions for our initial review:
e Token: 557cffd33bad80a5d48ac5141f4c50f90fe1fbaa
For the verification, we examined the Git revision:
fc627684cb4c84ac2605edcc0cc809a0f6c7dd56
For the review, these repositories were cloned for use during the audit and for reference in this report:

e Data Lakes Repository:
https://github.com/LeastAuthority/Data-Lakes-Repository

All file references in this document use Unix-style paths relative to the project’s root directory.

In addition, any dependency and third-party code, unless specifically mentioned as in scope, were
considered out of scope for this review.

Supporting Documentation

The following documentation was available to the review team:
e Medical Data for Research (Data Lake Website):
https://data-lake.co/researchers-medical-data-for-research
Data-Lake-Whitepaper-1.8-1.pdf (shared with Least Authority via email on October 31, 2022)
Smart Contracts architecture.pdf (shared with Least Authority via email on October 31, 2022)

Security Audit Report | Data Lake Smart Contracts | Data Lake 3
5 December 2022 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/Data-Lake-LLC/token-app
https://github.com/LeastAuthority/Data-Lakes-Repository
https://data-lake.co/researchers-medical-data-for-research

e Vesting logic.pdf (shared with Least Authority via email on October 31, 2022)
e Vesting Smart Contracts.pdf (shared with Least Authority via email on October 31, 2022)
e Data Lake Token App Introduction.pdf (shared with Least Authority via email on October 31, 2022)

In addition, this audit report references the following documents:
e Solidity Documentation Recommendations:
https://docs.soliditylang.org/en/v0.8.17/contracts.html#errors-and-the-revert-statement

Areas of Concern

Our investigation focused on the following areas:

Correctness of the implementation;

Adversarial actions and other attacks on the network;

Potential misuse and gaming of the smart contracts;

Attacks that impacts funds, such as the draining or manipulation of funds;
Mismanagement of funds via transactions;

Denial of Service (DoS)/security exploits that would impact the intended use of the contracts or
disrupt their execution;

Vulnerabilities in the smart contracts’ code;

Protection against malicious attacks and other ways to exploit contracts;
Inappropriate permissions and excess authority;

Data privacy, data leaking, and information integrity; and

Anything else as identified during the initial analysis phase.

Findings

General Comments

The Data Lake smart contract suite composes the on-chain component of the Data Lake system, which
aims to create an incentivized mechanism to store medical patient consent authorization data on-chain.
In addition to the storage functionality, the smart contracts create the system token and facilitate token
transactions and data flow transfer.

Our team performed a comprehensive review of the smart contracts, identified issues in the design and
the implementation, and provided recommendations to address those issues. The nature of the issues
and suggestions identified by our team, and detailed in this report, suggest a hasty implementation.

System Design

Our team found that security has been considered in the design of the Data Lakes smart contracts as
demonstrated by the implementation of functionality to halt system operations if needed, and to remove
participants and their tokens from the system at will. We found, however, that there is no check
implemented to prevent the TokenVesting smart contract from being blacklisted by accident (Issue C).

In addition, there are liberal controls implemented on the vesting component of the system. All of this
powerful functionality is controlled by a single owner address, a single point of failure to the system and
its users. We recommend that the ownership of the contract be further secured (Issue E).

The smart contracts use the Transfer function, which is insufficiently secure, given the availability of
safe libraries that prevent a transaction from failing silently (Issue F).

Security Audit Report | Data Lake Smart Contracts | Data Lake
5 December 2022 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://docs.soliditylang.org/en/v0.8.17/contracts.html#errors-and-the-revert-statement

Code Quality

Our team performed a manual review of the Data Lake smart contracts and identified implementation
errors (Issue A, Issue B, Issue G) and areas that can be improved by better adherence to best practice
(Suggestion 3, Suggestion 4, Suggestion 7). We recommend improving the function and variable naming
convention and removing unused variables to improve the readability of the code.

We also recommend that custom errors be used to improve the efficiency of the system and to reduce
gas costs (Suggestion 6), as well as optimizing the use of for loops to reduce gas consumption

(Suggestion 5).

Tests

Our team found that sufficient test coverage has been implemented for both repositories, which helps
check for implementation errors that could lead to security vulnerabilities.

Documentation

The project documentation provided for this review included a helpful description of the architecture of
the system. However, we found instances of the coded implementation being inconsistent with the
documentation. We recommend including a more detailed description of the implementation, its
components, and functions (Suggestion 2).

Code Comments

We found that while some functions have code comments describing the intended behavior, other
functions are not described correctly. We recommend that code comments be consistent and describe all
security-critical functions and components in accordance with NatSpec guidelines (Suggestion 1).

Scope

The scope of this review was sufficient and included all the on-chain security-critical components of the
Data Lake system.

Specific Issues & Suggestions

We list the issues and suggestions found during the review, in the order we reported them. In most cases,
remediation of an issue is preferable, but mitigation is suggested as another option for cases where a
trade-off could be required.

ISSUE / SUGGESTION STATUS

Issue A: Incorrect Implementation of deleteBeneficiary Resolved
Issue B: Incorrect Implementation of addVestingScheduleAllocation and Resolved

removeVestingScheduleAllocation
Issue C: BlackList Manager Can Blacklist TokenVesting Smart Contract Resolved

Issue D: claimTokens Does Not Deduct the vestingSchedulesTotalAmount by = Resolved

he Amount Claim Known |

Issue E: Centralized Ownership of Smart Contracts Resolved

Security Audit Report | Data Lake Smart Contracts | Data Lake 5
5 December 2022 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://docs.soliditylang.org/en/latest/natspec-format.html

Issue F: Unchecked Return Value from the ERC-20 Token Transfer Resolved

Issue G: Missing Zero Check for terms in createVestingSchedule Function Resolved

Suggestion 1: Update Code Comments to Reflect the Actual Implementation = Resolved

ion 2: Documentation to Refl he Implementation Unresolved
Suggestion 3: Change Misleading Naming of Functions Resolved
Suggestion 4: Set TGE Timestamp in the Constructor Resolved
Suggestion 5: Cache the Length in for Loops Resolved
Suggestion 6: Use Custom Errors to Save Gas Resolved
Suggestion 7: Use an Updated and Non-Floating Pragma Version Resolved

Issue A: Incorrect Implementation of deleteBeneficiary

Location

contracts/TokenVesting.sol#L395-1.403

Synopsis

In the deleteBeneficary function, there is no check to test if _beneficiary is not a zero address.
There is also no check to verify if the beneficiary being deleted actually exists. In both cases, the function
loops through the entire vestingSchedulesNames array needlessly. Additionally, if the _beneficiary
does exist, the function loops through the vestingScheduleNames array rather than those related to
the particular beneficiary only.

In the zero address case, a new zero address beneficiary is added to the mapping of beneficiaries for
every vestingScheduleName, if it is the first time calling with a zero address. Otherwise, it is an
unnecessary update of a previously added zero address.

For the non-existing address case, a new beneficiary is added to the mapping of beneficiaries for every
vestingScheduleName with that address if it is the first time calling with a non-existing address.
Otherwise, it is an unnecessary update of a previously added non-existing address.

Additionally, when there is no beneficiary for any vestingSchedulesNames|[1i], it redundantly performs
operations, and another beneficiary may be added for vestingSchedulesNames[i].

Impact

In the first two cases, an incorrect event is emitted at the end of the function because it did not actually
delete anything but rather added to the mapping. In every case, it results in the further consumption, and
eventual loss, of gas. Additionally, the incorrect event results in misinterpretation of the state of the
contract for external entities (whoever is watching for that event).

Security Audit Report | Data Lake Smart Contracts | Data Lake 6
5 December 2022 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/Data-Lakes-Repository/blob/557cffd33bad80a5d48ac5141f4c50f90fe1fbaa/contracts/TokenVesting.sol#L395-L403

Preconditions

This issue is possible if the _beneficiary is a zero address or if there is no beneficiary with such an
address. It is also possible if the beneficiary has no allocation in a VestingSchedule, which has
vestingSchedulename = vestingSchedulesNames[i].

Mitigation

We recommend implementing a check that the _beneficiary is not a zero address. Additionally, as
suggested by the Data Lake team during the audit, we recommend finding the list of active vesting
schedule names, checking the length of the list, and reverting if the length of the list is not greater than
zero.

Moreover, we recommend only looping through those vestingScheduleNames, which are related to the
particular beneficiary using active vesting schedule names to avoid redundancy. The implementation
could be as follows:

require(_beneficiary != address(0x9));

string[] memory scheduleNames =
getBeneficiaryActiveScheduleNames(_beneficiary);

uint32 activeScheduleslLength = scheduleNames.length;
require(activeSchedulesLength > 0);
for (uint32 i = @; i < activeScheduleslLength; i++) {

uint256 unreleasedAmount =
getBeneficiaryUnreleasedAmount(_beneficiary, vestingSchedulesNames[i]);

beneficiaries[_beneficiary][scheduleNames[i]].allocatedAmount -=
unreleasedAmount;

vestingSchedules[scheduleNames[i]].allocatedAmount -=
unreleasedAmount;

}

Status
The recommended check has been implemented in the deleteBeneficary function

Verification

Resolved.

Issue B: Incorrect Implementation of addVestingScheduleAllocation and
removeVestingScheduleAllocation

Location

contracts/TokenVesting.sol#1296-1294
contracts/TokenVesting.sol#1301-1305

Security Audit Report | Data Lake Smart Contracts | Data Lake 7
5 December 2022 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/Data-Lakes-Repository/blob/557cffd33bad80a5d48ac5141f4c50f90fe1fbaa/contracts/TokenVesting.sol#L290-L294
https://github.com/LeastAuthority/Data-Lakes-Repository/blob/557cffd33bad80a5d48ac5141f4c50f90fe1fbaa/contracts/TokenVesting.sol#L301-L305

Synopsis
The above-referenced functions are missing necessary checks and adjustments or execute incorrect
adjustments:

1. The addVestingScheduleAllocation function does not check if the contract has enough
unused balance to dedicate to the particular vesting schedule: require(getUnusedAmount()
>= _amount). As a result, the amount of balance dedicated to all vesting schedules could
exceed the smart contract’s balance, rendering the smart contract unable to pay for all vesting
schedules;

2. The removeVestingScheduleAllocation function does not check if the schedule has
enough unallocated tokens to deduct from:
require(getScheduleUnallocatedAmount(_name) >= _amount). If the amount
deducted is more than a particular vesting schedule’s unallocated amount, the smart contract
would lose track of the vestingSchedulesTotalAmount, assuming the amount allocated to
beneficiaries is less than what it actually is, which may result in it being unable to pay for all
vesting schedules;

3. Both functions do not check if a VestingSchedule function with the particular _name
argument exists. In the case of addVestingScheduleAllocation, the operation would pass
and a new VestingSchedule would be added to the vestingSchedules mapping, with
vestingSchedule.totalAmount = _amount. Inthe case of
removeVestingScheduleAllocation, it would revert due to an unpredicted underflow:
vestingSchedules[_name].allocatedAmount -= _amount

4. Both functions incorrectly adjust vestingSchedules|[_name].allocatedAmount instead of
vestingSchedules[_name] .totalAmount. This might lead to the track of the actual
vestingSchedule.allocated amount being lost, resulting in incorrect calculations in the
functions getSchedulelLockedAmount and getScheduleUnallocatedAmount
Consequently, the claimTokens function could behave unexpectedly; and

5. Both functions are missing the necessary adjustments of vestingSchedulesTotalAmount by
the amount increased or decreased:
vestingSchedulesTotalAmount += _amount;

vestingSchedulesTotalAmount -= _amount;

In both increase and decrease cases, the vestingSchedulesTotalAmount would indicate an
incorrect state of the amount reserved for all vesting schedules, resulting in the
getUnusedAmount function incorrectly calculating the remaining balance to be allocated for
vesting schedules.

Mitigation
We recommend implementing these functions as follows:

addVestingScheduleAllocation:

function addVestingScheduleAllocation(uint256 _amount, string calldata _name)
external onlyOwner {

require(!paused, 'TokenVesting: Contract is paused!');

require(_amount != @, 'TokenVesting: amount must be bigger than
zero');

//This line checks if the vesting schedule is valid (exists)
Security Audit Report | Data Lake Smart Contracts | Data Lake 8

5 December 2022 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

require(isVestingScheduleValid(_name), "Vesting schedule is not
valid");

//Add this check to ensure the contract has enough unused balance

require(getUnusedAmount() >= _amount, "_amount cannot be greater the
unused balance");

//Add the following line and remove the previous line to adjust
vestingSchedule's totalAmount instead of allocatedAmount.

vestingSchedules[_name].totalAmount += _amount;

//Add this line to perform necessary adjustment of
vestingSchedulesTotalAmount

vestingSchedulesTotalAmount += _amount;
}
RemoveVestingScheduleAllocation:

function removeVestingScheduleAllocation(uint256 _amount, string calldata
_name) external onlyOwner {

require(!paused, 'TokenVesting: Contract is paused!');

require(_amount != 0, 'TokenVesting: amount must be bigger than
zero');

//This line checks if the vesting schedule is valid (exists)

require(isVestingScheduleValid(_name), "Vesting schedule is not
valid");

//Add this check to ensure the schedule has enough amount of
unallocated tokens to deduct from

require(getScheduleUnallocatedAmount(_name) >= _amount, 'TokenVesting:
amount cannot be greater than vesting schedule unallocated amount');

//Add the following line and remove the previous line to adjust
vestingSchedule's totalAmount instead of allocatedAmount.

vestingSchedules[_name].totalAmount -= _amount;

//Add this line to perform necessary adjustment of
vestingSchedulesTotalAmount

Security Audit Report | Data Lake Smart Contracts | Data Lake
5 December 2022 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

vestingSchedulesTotalAmount -= _amount;

Status
The referenced functions have been reimplemented according to the recommendation.

Verification

Resolved.

Issue C: BlackList Manager Can Blacklist TokenVesting Smart Contract

Location

contracts/access/BlacklistManager.sol#L68-L74

Synopsis
In the addToBlacklist function, there is no check to verify if the address being blacklisted is not the
TokenVesting smart contract.

Impact

If this happens for any reason, the TokenVesting smart contract would not be able to send SLAKE
tokens until it is removed from the blacklist.

Mitigation
We recommend adding a check in the addToBlackList function to identify that the blacklisted address
is not the TokenVesting smart contract address.

Status
A check has been implemented to the addToBlacklist function.

Verification

Resolved.

Issue D: claimTokens Does Not Deduct the vestingSchedulesTotalAmount
by the Amount Claimed (Known Issue)

Location

contracts/TokenVesting.sol#1482-1507

Synopsis
The Data Lake developer team raised this issue during the audit and noted that the allocated tokens,
which had been claimed, were not deducted from the vestingSchedulesTotalAmount.

Impact

If the allocated tokens, which were claimed, were not deducted from the
vestingSchedulesTotalAmount, this could prevent the creation of new vesting schedules and/or
allocations.

Security Audit Report | Data Lake Smart Contracts | Data Lake 10
5 December 2022 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/Data-Lakes-Repository/blob/557cffd33bad80a5d48ac5141f4c50f90fe1fbaa/contracts/access/BlacklistManager.sol#L68-L74
https://github.com/LeastAuthority/Data-Lakes-Repository/blob/557cffd33bad80a5d48ac5141f4c50f90fe1fbaa/contracts/TokenVesting.sol#L482-L507

Remediation
The Data Lake team resolved this issue by deducting the vestingSchedulesTotalAmount by the
amount claimed.

Status
The Data Lake smart contracts team resolved the issue.

Verification

Resolved.

Issue E: Centralized Ownership of Smart Contracts

Location
Example (non-exhaustive):

contracts/TokenVesting.sol#1.831-1835

Synopsis
The smart contracts in scope, which include the functions for changing the owner, are heavily dependent
on the owner.

Impact
If the owner is set incorrectly, the functionality that depends on it will break and negatively impact the
protocol, rendering it almost unusable.

Mitigation

We recommend that a two-step process be used whereby in the first step, a new owner is proposed, and
in the second step, the previous owner remains in charge until the newly appointed owner claims the
owner rule.

Status
The recommended mitigation has been implemented.

Verification
Resolved.

Issue F: Unchecked Return Value from the ERC-20 Token Transfer

Location

contracts/tokenvesting#L141

Synopsis
The return value from the token transfer should be checked to verify that the transaction has been
executed successfully.

Impact
This issue could result in the ERC-20 Token transfer failing silently, thereby affecting the token accounting
process.

Security Audit Report | Data Lake Smart Contracts | Data Lake 11
5 December 2022 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/Data-Lakes-Repository/blob/557cffd33bad80a5d48ac5141f4c50f90fe1fbaa/contracts/TokenVesting.sol#L831-L835
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/access/Ownable2Step.sol
https://github.com/LeastAuthority/Data-Lakes-Repository/blob/557cffd33bad80a5d48ac5141f4c50f90fe1fbaa/contracts/TokenVesting.sol#L141

Mitigation
We recommend the use of SafeTransfer from the OpenZepplin library.

Status
The use of the recommended library has been implemented.

Verification

Resolved.

Issue G: Missing Zero Check for terms in createVestingSchedule Function

Location

contracts/TokenVesting.sol#L.188-1219

Synopsis
In the createVestingSchedule function, there is no check to verify if the terms argument being
passed is not zero. Consequently, a vestingSchedule with zero terms could be added.

Impact

This would result in incorrect calculations in every function which uses vestingSchedule.terms. The
following are two prominent cases:

First, the isVestingScheduleFinished function would immediately return true after the
vestingSchedule.cliff time has passed without taking the vestingSchedule.duration into
account.

Second, the getPassedVestings function will always revert due to a division by zero.

Preconditions

The passed terms argument to the createVestingSchedule function is zero.

Mitigation
We recommend adding a zero check for terms in the createVestingSchedule function.

Status
A zero check has been implemented in the createVestingSchedule function as recommended.

Verification

Resolved.

Suggestions

Suggestion 1: Update Code Comments to Reflect the Actual
Implementation

Location
Examples (Non-exhaustive):

contracts/l akeToken.sol#130-143

Security Audit Report | Data Lake Smart Contracts | Data Lake 12
5 December 2022 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://docs.openzeppelin.com/contracts/2.x/api/token/erc20#SafeERC20
https://github.com/LeastAuthority/Data-Lakes-Repository/blob/557cffd33bad80a5d48ac5141f4c50f90fe1fbaa/contracts/TokenVesting.sol#L188-L219
https://github.com/LeastAuthority/Data-Lakes-Repository/blob/557cffd33bad80a5d48ac5141f4c50f90fe1fbaa/contracts/LakeToken.sol#L30-L43

contracts/access/BlacklistManager.sol#L20-122

contracts/access/BlacklistManager.sol#L28-1L30

contracts/access/BlacklistManager.sol#L35-L38

contracts/access/BlacklistManager.sol#L44-147

Synopsis
There are many instances of functions with comments that do not reflect the actual implementation of
the functions.

Mitigation
We recommend updating code comments to describe functions as implemented.

Status
The code comments have been updated as recommended.

Verification

Resolved.

Suggestion 2: Update Documentation to Reflect the Implementation

Synopsis
The project documentation provided for this review was not up to date, and our team found many
discrepancies between the provided documentation and the actual implementation.

Mitigation
We recommend updating the documentation to reflect the actual implementation.

Status
The documentation has not been updated as recommended, as of the verification phase of this review.

Verification

Unresolved.

Suggestion 3: Change Misleading Naming of Functions

Location

contracts/TokenVesting.sol#1296-1294
contracts/TokenVesting.sol#1301-1305

Synopsis
The naming of the above-referenced functions is misleading and does not clearly describe their intended
behavior.

Security Audit Report | Data Lake Smart Contracts | Data Lake 13
5 December 2022 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/Data-Lakes-Repository/blob/557cffd33bad80a5d48ac5141f4c50f90fe1fbaa/contracts/access/BlacklistManager.sol#L20-L22
https://github.com/LeastAuthority/Data-Lakes-Repository/blob/557cffd33bad80a5d48ac5141f4c50f90fe1fbaa/contracts/access/BlacklistManager.sol#L28-L30
https://github.com/LeastAuthority/Data-Lakes-Repository/blob/557cffd33bad80a5d48ac5141f4c50f90fe1fbaa/contracts/access/BlacklistManager.sol#L35-L38
https://github.com/LeastAuthority/Data-Lakes-Repository/blob/557cffd33bad80a5d48ac5141f4c50f90fe1fbaa/contracts/access/BlacklistManager.sol#L44-L47
https://github.com/LeastAuthority/Data-Lakes-Repository/blob/557cffd33bad80a5d48ac5141f4c50f90fe1fbaa/contracts/TokenVesting.sol#L290-L294
https://github.com/LeastAuthority/Data-Lakes-Repository/blob/557cffd33bad80a5d48ac5141f4c50f90fe1fbaa/contracts/TokenVesting.sol#L301-L305

Mitigation
We recommend that addVestingScheduleAllocation be changed to

increaseVestingScheduleTotalAmount and removeVestingScheduleAllocation be changed

to decreaseVestingScheduleTotalAmount.

Status
The names of the referenced functions have been updated as recommended.

Verification
Resolved.

Suggestion 4: Set TGE Timestamp in the Constructor

Location
contracts/TokenVesting.sol#L174-L178

Synopsis
Since the setTgeTimestamp function is only called once during the deployment, there is no need for
such a function, and it can be set in the constructor.

Mitigation
We recommend removing the redundant function as well as the TgeTimestampChanged event

declaration and only setting the tgeTimestamp function in the constructor.

Status
The tgeTimestamp function is now only set in the constructor.

Verification

Resolved.

Suggestion 5: Cache the Length in for Loops

Location
Example (non-exhaustive):

Contracts/TokenVesting#L 583

Synopsis

In many sections of the code, the "for loop" is implemented so that the Solidity compiler will always read

the length of the array during each iteration. As a result:

1. Ifitis a storage array, this is an extra sload operation (100 additional extra gas, according to

EIP-2929, for each iteration except for the first);

2. Ifitis amemory array, this is an extra mload operation (3 additional gas for each iteration except

for the first); and
3. Ifitisacalldata array, this is an extra calldataload operation (3 additional gas for each
iteration except for the first).

Security Audit Report | Data Lake Smart Contracts | Data Lake
5 December 2022 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

14

https://github.com/LeastAuthority/Data-Lakes-Repository/blob/557cffd33bad80a5d48ac5141f4c50f90fe1fbaa/contracts/TokenVesting.sol#L174-L178
https://github.com/LeastAuthority/Data-Lakes-Repository/blob/557cffd33bad80a5d48ac5141f4c50f90fe1fbaa/contracts/TokenVesting.sol#L583
https://eips.ethereum.org/EIPS/eip-2929

Mitigation
We recommend avoiding these extra costs by caching the array length (in stack), as follows:

uint length = arr.length;
for (uint 1 = 0; i < length; i++) {
// do something that doesn't change arr.length

}

In the above example, the sload, mload, or calldataload operation is only called once and is
subsequently replaced by a more efficient dupN instruction. Even though mload, calldataload, and
dupN have the same gas cost, mload and calldataload need an additional dupN to put the offset in
the stack, i.e., an extra 3 gas.

This optimization is especially important in the case of a storage array or lengthy loops.

Status
The suggested optimization has been implemented.

Verification

Resolved.

Suggestion 6: Use Custom Errors to Save Gas

Location

Contract/TokenVesting#L523

Synopsis

The codebase currently uses require and revert string messages for error handling. However, using a
revert with a custom Error in transactions, instead of a string error message, considerably optimizes
gas costs, according to Solidity documentation recommendations.

Mitigation
We recommend using a revert with a custom Error to handle errors.

Status
Custom errors have been implemented as recommended.

Verification

Resolved.

Suggestion 7: Use an Updated and Non-Floating Pragma Version

Synopsis

Smart contracts in the project have their pragma set to #0.8.0. Compiling with different versions of the
compiler might lead to unexpected results. In addition, older versions of the Solidity compiler contain
bugs that have been fixed in more recent versions of the compiler, including up-to-date security patches.

Security Audit Report | Data Lake Smart Contracts | Data Lake 15
5 December 2022 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/Data-Lakes-Repository/blob/557cffd33bad80a5d48ac5141f4c50f90fe1fbaa/contracts/TokenVesting.sol#L523
https://docs.soliditylang.org/en/v0.8.17/contracts.html#errors-and-the-revert-statement

Mitigation
In order to maintain consistency and to prevent unexpected behavior, we recommended that the Solidity
compiler version be pinned by removing "*" and using the latest version of the Solidity compiler.

Status
The Solidity compiler pragma has been updated and pinned as recommended.

Verification

Resolved.

Security Audit Report | Data Lake Smart Contracts | Data Lake
5 December 2022 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

16

About Least Authority

We believe that people have a fundamental right to privacy and that the use of secure solutions enables
people to more freely use the Internet and other connected technologies. We provide security consulting
services to help others make their solutions more resistant to unauthorized access to data and
unintended manipulation of the system. We support teams from the design phase through the production
launch and after.

The Least Authority team has skills for reviewing code in multiple Languages, such as C, C++, Python,
Haskell, Rust, Node.js, Solidity, Go, JavaScript, ZoKrates, and circom, for common security vulnerabilities
and specific attack vectors. The team has reviewed implementations of cryptographic protocols and
distributed system architecture in cryptocurrency, blockchains, payments, smart contracts, and
zero-knowledge protocols. Additionally, the team can utilize various tools to scan code and networks and
build custom tools as necessary.

Least Authority was formed in 2011 to create and further empower freedom-compatible technologies. We
moved the company to Berlin in 2016 and continue to expand our efforts. We are an international team
that believes we can have a significant impact on the world by being transparent and open about the work
we do.

For more information about our security consulting, please visit
https://leastauthority.com/security-consulting/.

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort. The goals of our
security audits are to improve the quality of systems we review and aim for sufficient remediation to help
protect users. The following is the methodology we use in our security audit process.

Manual Code Review

In manually reviewing all of the code, we look for any potential issues with code logic, error handling,
protocol and header parsing, cryptographic errors, and random number generators. We also watch for
areas where more defensive programming could reduce the risk of future mistakes and speed up future
audits. Although our primary focus is on the in-scope code, we examine dependency code and behavior
when it is relevant to a particular line of investigation.

Vulnerability Analysis

Our audit techniques include manual code analysis, user interface interaction, and whitebox penetration
testing. We look at the project's website to get a high level understanding of what functionality the
software under review provides. We then meet with the developers to gain an appreciation of their vision
of the software. We install and use the relevant software, exploring the user interactions and roles. As we
do this, we brainstorm threat models and attack surfaces. We read design documentation, review other
audit results, search for similar projects, examine source code dependencies, skim open issue tickets, and
generally investigate details other than the implementation. We hypothesize what vulnerabilities may be
present and possibly resulting in Issue entries, then for each, we follow the following Issue Investigation
and Remediation process.

Security Audit Report | Data Lake Smart Contracts | Data Lake 17
5 December 2022 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://leastauthority.com/security-consulting/

Documenting Results

We follow a conservative and transparent process for analyzing potential security vulnerabilities and
seeing them through successful remediation. Whenever a potential issue is discovered, we immediately
create an Issue entry for it in this document, even before having verified the feasibility and impact of the
issue. This process is conservative because we document our suspicions early even if they are later
shown to not represent exploitable vulnerabilities. We generally follow a process of first documenting the
suspicion with unresolved questions, then confirming the issue through code analysis, live
experimentation, or automated tests. Code analysis is the most tentative, and we strive to provide test
code, log captures, or screenshots demonstrating our confirmation. After this, we analyze the feasibility of
an attack in a live system.

Suggested Solutions

We search for immediate and comprehensive mitigations that live deployments can take, and finally, we
suggest the requirements for remediation engineering for future releases. The mitigation and remediation
recommendations should be scrutinized by the developers and deployment engineers, and successful
mitigation and remediation is an ongoing collaborative process after we deliver our Initial Audit Report,
and before we perform a verification review.

Before our report, including any details about our findings and the solutions are shared, we like to work
with your team to find reasonable outcomes that can be addressed as soon as possible without an overly
negative impact on pre-existing plans. Although the handling of issues must be done on a case-by-case
basis, we always like to agree on a timeline for a resolution that balances the impact on the users and the
needs of your project team.

Resolutions & Publishing

Once the findings are comprehensively addressed, we complete a verification review to assess that the
issues and suggestions are sufficiently addressed. When this analysis is completed, we update the report
and provide a Final Audit Report that can be published in whole. If there are critical unaddressed issues,
we suggest the report not be published and the users and other stakeholders be alerted of the impact. We
encourage that all findings be dealt with and the Final Audit Report be shared publicly for the transparency
of efforts and the advancement of security learnings within the industry.

Security Audit Report | Data Lake Smart Contracts | Data Lake 18
5 December 2022 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

